Sains Malaysiana 53(12)(2024): 3365-3376
http://doi.org/10.17576/jsm-2024-5312-19
A
Double-Edged Sword Effect of Angiogenesis in
Hypertension: A Review
(Kesan Pedang Bermata Dua
Angiogenesis dalam Hipertensi: Suatu Tinjauan)
Noor Hasila, A.D.1, Nur Syahidah, N.H.1, Adila, A.H.2, Farinawati Yazid3 & Nur Najmi, M.A.1,*
1Programme of Biomedical Science,
Centre of Toxicology & Health Risk Studies, Faculty of Health Sciences,
Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur,
Malaysia
2Physiology Department, Faculty of Medicine, Universiti Kebangsaan
Malaysia Medical Centre (UKMMC), 56000 Cheras, Kuala Lumpur, Malaysia
3Discipline of Pediatric Dentistry, Department of Family Oral
Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul
Aziz, 50300 Kuala Lumpur, Malaysia
Received:
30 May 2024/Accepted: 29 October 2024
Abstract
Hypertension, commonly known as high blood pressure, is a serious
medical condition that significantly raises the risk of heart, brain, kidney,
and blood vessel diseases. It remains one of the leading causes of morbidity
and mortality worldwide, with its mechanisms still not fully understood. One
emerging area of interest is the role of angiogenesis, the formation of new
blood vessels, which is regulated by a delicate balance between pro- and
anti-angiogenic modulators, including angiogenic factors, extracellular matrix
proteins, adhesion receptors, and proteolytic enzymes. Disruption of this
balance can lead to abnormal angiogenesis, potentially contributing to
hypertension, as angiogenic growth factors are critical in maintaining vascular
structure. If left untreated, high blood pressure damages capillaries and
microvessels, accelerating the process of vascular rarefaction. Notably,
microvascular rarefaction may occur independently of changes in blood pressure,
indicating its potential role as a primary factor in hypertension progression.
The ‘double-edged sword effect’ describes the paradoxical impact of both pro-
and anti-angiogenic therapies, where either type of drug can induce
hypertension, highlighting the dual nature of angiogenic regulation in vascular
health. Given the rising use of angiogenesis-modulating therapies in treating
various diseases, therapy-induced hypertension is expected to become more
prevalent. This review was conducted to address the growing need to understand
this dual effect of angiogenic therapies, the mechanisms underlying
hypertension development, and the critical importance of early detection and
long-term management of hypertension in patients undergoing such treatments.
Keywords:
Angiogenesis;
anti-angiogenic; hypertension; microvascular rarefaction; pro-angiogenic
Abstrak
Hipertensi, yang dikenali sebagai tekanan darah tinggi, adalah keadaan
perubatan serius yang secara signifikan meningkatkan risiko penyakit jantung,
otak, buah pinggang dan saluran darah. Ia kekal sebagai salah satu punca utama
morbiditi dan mortaliti di seluruh dunia dengan mekanismenya yang masih belum
difahami sepenuhnya. Salah satu bidang yang semakin mendapat perhatian ialah
peranan angiogenesis, iaitu pembentukan saluran darah baharu yang dikawal oleh
keseimbangan halus antara modulator pro-angiogenik dan anti-angiogenik,
termasuk faktor angiogenik, protein matriks ekstrasel, reseptor adhesi dan
enzim proteolitik. Gangguan pada keseimbangan ini boleh menyebabkan
angiogenesis yang tidak normal, berpotensi menyumbang kepada hipertensi, kerana
faktor pertumbuhan angiogenik adalah penting dalam mengekalkan struktur
vaskular. Jika tidak dirawat, tekanan darah tinggi boleh merosakkan kapilari
dan mikrovesel, mempercepatkan proses kekurangan vaskular. Kekurangan
mikrovesel ini juga mungkin berlaku secara bebas daripada perubahan tekanan
darah, menunjukkan peranannya sebagai faktor utama dalam perkembangan
hipertensi. Kesan ‘pedang bermata dua’ menggambarkan impak paradoks kedua-dua
terapi pro- dan anti-angiogenik dengan kedua-dua jenis ubat boleh menyebabkan hipertensi,
menonjolkan sifat dwi pengawalan angiogenik dalam kesihatan vaskular.
Memandangkan penggunaan terapi yang memodulasi angiogenesis semakin meningkat
untuk merawat pelbagai penyakit, hipertensi yang disebabkan oleh terapi
dijangka menjadi lebih kerap. Kajian semula ini dijalankan untuk menangani
keperluan yang semakin meningkat dalam memahami kesan dwi terapi angiogenik,
mekanisme yang mendasari perkembangan hipertensi, serta kepentingan kritikal
pengesanan awal dan pengurusan jangka panjang hipertensi pada pesakit yang
menjalani rawatan sedemikian.
Kata
kunci: Angiogenesis; anti-angiogenik; hipertensi; kekurangan mikrovaskular; pro-angiogenik
REFERENCES
Adair, T.H. & Montani, J.P. 2022. Angiogenesis. San Rafael: Morgan & Claypool Life Sciences. https://www.ncbi.nlm.nih.gov/books/NBK53238/
Bazzazi, H., Isenberg, J.S. & Popel, A.S. 2017. Inhibition
of VEGFR2 activation and its downstream signaling to ERK1/2 and calcium by
thrombospondin-1 (TSP1): In silicoinvestigation. Frontiers in Physiology 8: 48. https://www.frontiersin.org/articles/10.3389/fphys.2017.00048/full
Boegehold, M.A. 2007. Vascular remodelling and rarefaction in hypertension. Comprehensive
Hypertension 59(Part 2): 367-374. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/capillary-rarefaction
Broekman, F. 2011. Tyrosine
kinase inhibitors: Multi-targeted or single-targeted? World Journal
of Clinical Oncology 2(2): 80. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3095472
Brozovich, F.V., Nicholson, C.J., Degen, C.V., Gao, Y.Z., Aggarwal, M. & Morgan, K.G. 2016. Mechanisms of vascular smooth muscle
contraction and the basis for pharmacologic treatment of smooth muscle
disorders. Pharmacological Reviews 68(2): 476-532.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819215/
Cao, R., Bråkenhielm, E., Pawliuk, R., Wariaro, D., Post, M.J., Wahlberg, E., Leboulch, P. & Cao, Y.
2003. Angiogenic synergism, vascular stability and improvement
of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nature Medicine 9(5): 604-613. https://pubmed.ncbi.nlm.nih.gov/12669032
Carmeliet, P. & Jain, R.K. 2011. Molecular
mechanisms and clinical applications of angiogenesis. Nature 473(7347): 298-307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4049445
Cébe-Suarez, S.,
Zehnder-Fjällman, A. & Ballmer-Hofer, K. 2006. The role of VEGF receptors in angiogenesis; complex partnerships. Cellular
and Molecular Life Sciences 63(5): 601-615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773843
Cheng, C., Diamond, J.J. & Falkner, B. 2008. Functional
capillary rarefaction in mild blood pressure elevation. Clinical and
Translational Science 1(1): 75-79. https://pubmed.ncbi.nlm.nih.gov/19412330
Chi, A.S. & Wen, P.Y. 2012. Inhibiting angiogenesis in malignant gliomas. In Handbook of
Clinical Neurology, edited by Aminoff, M.J., Boller, F. & Swaab, D.F.
Elsevier. 104: 279-308. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecularbiology/platelet-derived-growth-factor
Cho, C.H., Kammerer, R.A., Lee, H.J., Steinmetz, M.O., Ryu, Y.S., Lee, S.H., Yasunaga, K., Kim, K.T., Kim, I., Choi, H.H., Kim, W., Kim, S.H., Park, S.K., Lee, G.M. & Koh, G.Y. 2004. COMP-Ang1:
A designed angiopoietin-1 variant with nonleaky angiogenic activity. Proceedings
of the National Academy of Sciences 101(15): 5547-5552.
https://pubmed.ncbi.nlm.nih.gov/15060279
Cooke, J.P. & Losordo, D.W. 2015. Modulating
the vascular response to limb ischemia. Circulation Research 116(9): 1561-1578.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869986
De
Falco, S. 2012. The
discovery of placenta growth factor and its biological activity. Experimental
and Molecular Medicine 44(1): 1-9. https://www.nature.com/articles/emm20121
de
Jesus-Gonzalez, N., Robinson, E., Moslehi, J. & Humphreys, B.D. 2012. Management
of antiangiogenic
therapy-induced hypertension. Hypertension 60(3): 607-615. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421063
Deveza, L., Choi, J. & Yang, F. 2012. Therapeutic
angiogenesis for treating cardiovascular diseases. Theranostics 2(8): 801-814.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425124
Ding, Y., Song, N. & Luo, Y. 2012. Role
of bone marrow-derived cells in angiogenesis: Focus on
macrophages and pericytes. Cancer Microenvironment 5(3): 225-236.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460052
D’Souza, R., Raghuraman, R.P., Nathan, P., Manyonda, I.T. & Antonios, T.F.T. 2011. Low birth weight
infants do not have capillary rarefaction at birth. Hypertension 58(5): 847-851. https://www.ahajournals.org/doi/pdf/10.1161/hypertensionaha.111.179226
E, G., Cao, Y.,
Bhattacharya, S., Dutta, S., Wang, E. & Mukhopadhyay, D. 2012. Endogenous
vascular endothelial growth factor-A (VEGF-A) maintains endothelial cell
homeostasis by regulating VEGF receptor-2 transcription. Journal of
Biological Chemistry 287(5): 3029-3041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270960
Ehrbar, M., Djonov, V.G., Schnell, C., Tschanz, S.A.,
Martiny-Baron, G., Schenk, U., Wood, J., Burri, P.H.,
Hubbell, J.A. & Zisch, A.H. 2004. Cell-demanded
liberation of VEGF 121 from fibrin
implants induces local and controlled blood vessel growth. Circulation
Research 94(8): 1124-1132.
https://www.ahajournals.org/doi/full/10.1161/01.RES.0000126411.29641.08
Gohlke, P., Kuwer, I., Schnell, A., Amann, K., Mall, G. & Unger, T. 1997. Blockade
of Bradykinin B 2 receptors prevents the increase in capillary density induced
by chronic angiotensin-converting enzyme inhibitor treatment in stroke-prone
spontaneously hypertensive rats. Hypertension 29(1): 478-482.
https://www.ahajournals.org/doi/10.1161/01.HYP.29.1.478
Hecht, M. 2019. Types
and Stages
of Hypertension. https://www.healthline.com/health/types-and-stages-of-hypertension#other-types
Hinton, T.C., Adams, Z.H., Baker, R.P., Hope, K.A., Paton, J.F.R., Hart E.C. & Nightingale, A.K.
2020. Investigation and treatment of high blood pressure in
young people:
Too much medicine or appropriate risk reduction? Hypertension 75(1): 16-22.
https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.119.13820
Humar, R., Zimmerli, L. & Battegay, E. 2009. Angiogenesis
and hypertension: An
update. Journal of Human Hypertension 23(12): 773-782.
https://www.nature.com/articles/jhh200963
Hurwitz, H.,
Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R. & Kabbinavar, F. 2004. Bevacizumab
plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine 350(23): 2335-2342.
https://www.nejm.org/doi/full/10.1056/nejmoa032691
Iliades, C. 2009. Hypertension
Types - Hypertension Center - Everyday Health. https://www.everydayhealth.com/hypertension/understanding/types-of-hypertension.aspx
Joyner, M.J., Schrage, W.G. & Eisenach, J.H. 2007. Control
of blood pressure: Normal and abnormal. In Neurobiology
of Disease, edited by
Gilman, S. Massachusetts: Academic Press. pp. 997-1005.
https://www.sciencedirect.com/topics/veterinary-science-and-veterinary-medicine/total-peripheral-resistance
Jujo, K., Ii, M. & Losordo, D.W. 2008. Endothelial
progenitor cells in neovascularization of infarcted myocardium. Journal of
Molecular and Cellular Cardiology 45(4): 530-544.
https://pubmed.ncbi.nlm.nih.gov/18755197
Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W.M., Silver, M., Kearney, M., Li, T., Isner, J.M. &
Asahara, T. 2000. Transplantation of ex vivo expanded endothelial
progenitor cells for therapeutic neovascularization. Proceedings of the
National Academy of Sciences 97(7): 3422-3427. https://pubmed.ncbi.nlm.nih.gov/10725398
Kawamoto, A., Gwon, H.C., Iwaguro, H., Yamaguchi, J.I., Uchida, S., Masuda, H., Silver, M., Ma, H.,
Kearney, M., Isner, J.M. & Asahara, T. 2001. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103(5): 634-637.
https://pubmed.ncbi.nlm.nih.gov/11156872
Kong, D.H., Kim, M., Jang, J., Na, H.J. & Lee, S. 2017. A review of
anti-angiogenic targets for monoclonal antibody cancer therapy. International
Journal of Molecular Sciences 18(8): 1786. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578174
Kim, S.K. &
Pangestuti, R. 2011. Biological activities and potential health benefits of
fucoxanthin derived from marine brown algae. Advances in Food and Nutrition
Research 64: 111-128. https://doi.org/10.1016/b978-0-12-387669-0.00009-0
Krock, B.L., Skuli, N. & Simon, M.C. 2011.
Hypoxia-induced angiogenesis: Good and evil. Genes
& Cancer 2(12): 1117-1133. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411127
Lachmann,
N. &
Nikol, S. 2007. Therapeutic angiogenesis for peripheral artery
disease: Stem cell therapy. Vasa 36(4): 241-251. https://pubmed.ncbi.nlm.nih.gov/18357916
Lange, C., Storkebaum, E., de Almodóvar, C.R., Dewerchin, M. & Carmeliet, P. 2016. Vascular
endothelial growth factor: A neurovascular target in neurological diseases. Nature Reviews Neurology 12(8): 439-454.
Levy, B.I., Ambrosio, G., Pries, A.R. & Struijker-Boudier, H.A.J. 2001. Microcirculation
in hypertension. Circulation 104(6): 735-740.
https://www.ahajournals.org/doi/10.1161/hc3101.091158
Marçola, M. & Rodrigues, C.E. 2015. Endothelial
progenitor cells in tumor angiogenesis: Another brick in the wall. Stem
Cells International2015: 832649.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4427119
Marek-Trzonkowska, N.,
Kwieczyńska, A.,
Reiwer-Gostomska, M.,
Koliński, T., Molisz, A. & Siebert, J. 2015. Arterial hypertension is characterized by imbalance of pro-angiogenic
versus anti-angiogenic factors. PLoS ONE 10(5). 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423857
Medlineplus. High Blood Pressure. 2020. https://medlineplus.gov/highbloodpressure.html
Montani, D., Bergot, E., Günther, S., Savale, L., Bergeron, A., Bourdin, A., Bouvaist, H., Canuet, M., Pison, C., Macro, M., Poubeau, P., Girerd, B., Natali, D., Guignabert, C., Perros, F., O'Callaghan, D.S., Jaïs, X.,
Tubert-Bitter, P., Zalcman, G., Sitbon, O., Simonneau, G. & Humbert, M. 2012. Pulmonary
arterial hypertension in patients treated by dasatinib. Circulation 125(17): 2128-2137.
https://www.ahajournals.org/doi/10.1161/circulationaha.111.079921
Mourad, J.J., des Guetz, G., Debbabi, H. & Levy, B.I. 2008. Blood
pressure rise following angiogenesis inhibition by bevacizumab. A crucial role
for microcirculation. Annals of Oncology 19(5): 927-934. https://pubmed.ncbi.nlm.nih.gov/18056916
Niu, G. & Chen, X. 2010. Vascular
endothelial growth factor as an anti-angiogenic target for cancer therapy. Current
Drug Targets 11(8). 1000-1017. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617502
Olufsen, M.S., Hill, N.A., Vaughan, G.D.A., Sainsbury, C. & Johnson, M. 2012. Rarefaction
and blood pressure in systemic and pulmonary arteries. Journal of Fluid
Mechanics 705: 280-305. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3433075
Ott, I., Keller, U., Knoedler, M., Götze, K.S., Doss, K., Fischer, P., Urlbauer, K., Debus, G., von Bubnoff, N., Rudelius, M., Schömig, A., Peschel, C. & Oostendorp, R.A. 2005. Endothelial‐like
cells expanded from CD34+ blood cells improve left
ventricular function after experimental myocardial infarction. The FASEB
Journal 19(8): 992-994.
https://pubmed.ncbi.nlm.nih.gov/15814609
Pries,
A.R. 2015. Vascular adaptation in hypertension. In PanVascular Medicine, edited by Lanzer, P. Heidelberg: Springer. pp. 1619-1624. https://link.springer.com/referenceworkentry/10.1007/978-3-642-37078-6_48
Ptinopoulou, A.G. & Sprangers, B. 2020. Tyrosine
kinase inhibitor-induced hypertension marker of anti-tumour treatment efficacy
or cardiovascular risk factor? Clinical Kidney Journal 14(1): 14-17.
Rajagopalan, S., Olin, J., Deitcher, S., Pieczek, A., Laird, J., Grossman, P.M., Goldman, C.K., McEllin,
K., Kelly, R. & Chronos, N. 2007. Use of a constitutively
active hypoxia-inducible factor-1α transgene as a therapeutic strategy in
no-option critical limb ischemia patients: Phase 1 dose-escalation experience. Circulation 115(10): 1234-1243. https://www.ahajournals.org/doi/10.1161/circulationaha.106.607994
Ribatti, D. 2013. Angiogenesis. In Brenner's
Encyclopedia of Genetics. (Second edition), edited by Maloy, S. & Hughes, K.
Massachusetts: Academic Press. pp. 130-132.
Ribatti, D. &
Crivellato, E. 2009. Immune cells and angiogenesis. Journal of Cellular and
Molecular Medicine 13(9a): 2822-2833.
https://doi.org/10.1111/j.1582-4934.2009.00810.x
Robinson, E.S., Khankin, E.V., Karumanchi, S.A. & Humphreys, B.D. 2010.
Hypertension induced by vascular endothelial growth factor signaling pathway
inhibition: Mechanisms and potential use as a biomarker. Seminars in
Nephrology 30(6): 591-601.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058726
Rosca, E.V., Koskimaki, J.E., Rivera, C.G., Pandey, N.B., Tamiz, A.P. & Popel, A.S. 2011. Anti-angiogenic
peptides for cancer therapeutics. Current Pharmaceutical Biotechnology 12(8): 1101-1116. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114256
Shibuya, M. 2011. Vascular
Endothelial Growth Factor (VEGF) and its receptor (VEGFR) signaling in
angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes
& Cancer 2(12): 1097-1105.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411125
Sun, H.J., Wu, Z.Y. Nie, X.W. & Bian, J.S. 2020. Role
of endothelial dysfunction in cardiovascular diseases: The link between
inflammation and hydrogen sulfide. Frontiers in Pharmacology 10: 1568.
https://www.frontiersin.org/articles/10.3389/fphar.2019.01568/full
Steeghs, N., Gelderblom, H., Roodt, J.O.,
Christensen, O., Rajagopalan, P. & Hovens, M. 2008. Hypertension
and rarefaction during treatment with telatinib, a small molecule angiogenesis
inhibitor. Clinical Cancer Research 14(11): 3470-3476. https://clincancerres.aacrjournals.org/content/14/11/3470
Takeshita, S. 2001. Angiotensin-converting
enzyme inhibition improves defective angiogenesis in the ischemic limb of
spontaneously hypertensive rats. Cardiovascular Research 52(2): 314-2001. https://academic.oup.com/cardiovascres/article/52/2/314/260730
Tarsia, J. & Caplan,
L.R. 2017. Basilar Artery Disease. Elsevier EBooks.
https://doi.org/10.1016/b978-0-12-803058-5.00084-9
Versmissen, J., Mirabito
Colafella, K.M., Koolen, S.L.W. & Danser, A.H.J. 2019. Vascular
cardio-oncology: Vascular endothelial growth factor inhibitors and
hypertension. Cardiovascular Research 115(5): 904-914.
Vilar, J., Waeckel, L., Bonnin, P., Cochain, C., Loinard, C., Duriez, M., Silvestre, J.S. & Lévy, B.I. 2008. Chronic
hypoxia–induced angiogenesis normalizes blood pressure in spontaneously
hypertensive rats. Circulation Research 103(7): 761-769.
https://www.ahajournals.org/doi/10.1161/circresaha.108.182758
Wang, X. & Snieder, H. 2017. Assessing
genetic risk of hypertension at an early age: Future
research directions. Expert Review of Cardiovascular Therapy 15(11): 809-812.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891828
Wasserstrum, Y., Kornowski, R., Raanani, P., Leader, A., Pasvolsky, O. & Iakobishvili, Z. 2015. Hypertension
in cancer patients treated with anti-angiogenic based regimens. Cardio-Oncology 1: 6.
https://cardiooncologyjournal.biomedcentral.com/articles/10.1186/s40959-015-0009-4
Zhu, X., Wu, S., Dahut, W.L. & Parikh, C.R. 2007. Risks of proteinuria
and hypertension with bevacizumab, an antibody against vascular endothelial
growth factor: Systematic review and meta-analysis. American Journal of Kidney
Diseases 49(2): 186-193. https://www.ajkd.org/article/S0272-6386(06)01833-6/pdf
Zisch, A.H., Lutolf, M.P. & Hubbell, J.A. 2003. Biopolymeric
delivery matrices for angiogenic growth factors. Cardiovascular Pathology 12(6): 295-310.
https://pubmed.ncbi.nlm.nih.gov/14630296
*Corresponding
author;
email: nurnajmi@ukm.edu.my